skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kubiak, Clifford P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr‐ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge‐transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr‐ESFG especially sensitive to the trion formation dynamics. The presence of charge‐transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers. 
    more » « less
  2. The synthesis of electrode-attached Rh(I) diisocyanide coordination polymers that incorporate a series of arylene diisocyanide linkers and which are grown from gold surfaces by a bottom-up, layer-by-layer procedure that allows for a high level of control for the film thickness is reported. A seed layer of the arylene diisocyanide ligand is used to template directional growth of the coordination polymer made using the well-studied square-planar rhodium tetrakis(isocyanide) as the metal node. Materials ranging from 1 to 30 layers were prepared via layer-by-layer solution-phase deposition. Characterization of the polymer films using scanning electron microscopy and ellipsometry shows layer-by-layer control in these films with linear thickness growth per layer. Phasemodulated infrared reflection absorption spectroscopy (PM-IRRAS), diffuse reflectance UV−vis, and X-ray photoelectron spectroscopy (XPS) were used to confirm the structures of the films. Although prior reports of related coordination polymers and films based on diisocyanides showed considerable air-instability, the films reported here demonstrate significantly improved chemical stability and electrochemical stability at a moderately high applied bias. Electrochemical characterization and ex situ XPS demonstrate that these diisocyanide films are stable to stripping at potentials up to −2.2 V versus decamethylferrocene in acetonitrile, supporting their relevance for electrochemical applications. 
    more » « less
  3. The synthesis, structure, and reactivity of a μ3-SnH capped trinuclear nickel cluster, [Ni3(dppm)33-H)(μ3-SnH)], is reported. This complex undergoes oxidative addition chemistry, alkyne insertion, and subsequent hydrogenation. 
    more » « less
  4. Synthetic control of the influence of steric and electronic factors on the ultrafast (picosecond) isomerization of penta-coordinate ruthenium dithietene complexes (Ru((CF 3 ) 2 C 2 S 2 )(CO)(L) 2 , where L = a monodentate phosphine ligand) is reported. Seven new ruthenium dithietene complexes were prepared and characterized by single crystal X-ray diffraction. The complexes are all square pyramidal and differ only in the axial vs. equatorial coordination of the carbonyl ligand. Fourier Transform Infrared (FTIR) spectroscopy was used to study the ν (CO) bandshapes of the complexes in solution, and these reveal rapid exchange between two or three isomers of each complex. Isomerization is proposed to follow a Berry psuedorotation-like mechanism where a metastable, trigonal bipyramidal (TBP) intermediate is observed spectroscopically. Electronic tuning of the phosphine ligands L = PPh 3 , P(( p -Me)Ph) 3 , (( p -Cl)Ph) 3 , at constant cone angle is found to have little effect on the kinetics or thermodynamic stabilities of the axial, equatorial and TBP isomers of the differently substituted complexes. Steric tuning of the phosphine ligands over a range of phosphine cone angles (135 < θ < 165°) has a profound impact on the isomerization process, and in the limit of greatest steric bulk, the axial isomer is not observable. Temperature dependence of the FTIR spectra was used to obtain the relative thermodynamic stabilities of the different isomers of each of the seven ruthenium dithietene complexes. This study details how ligand steric effects can be used to direct the solution state dynamics on the picosecond time scale of discrete isomers energetically separated by <2.2 kcal mol −1 . This work provides the most detailed description to date of ultrafast isomerization in the ground states of transition metal complexes. 
    more » « less
  5. Using a combination of two-dimensional infrared (2D IR) and variable temperature Fourier transform infrared (FTIR) spectroscopies the rapid structural isomerization of a five-coordinate ruthenium complex is investigated. In methylene chloride, three exchanging isomers were observed: (1) square pyramidal equatorial, ( 1 ); (2) trigonal bipyramidal, ( 0 ); and (3) square pyramidal apical, ( 2 ). Exchange between 1 and 0 was found to be an endergonic process (Δ H = 0.84 (0.08) kcal mol −1 , Δ S = 0.6 (0.4) eu) with an isomerization time constant of 4.3 (1.5) picoseconds (ps, 10 −12 s). Exchange between 0 and 2 however was found to be exergonic (Δ H = −2.18 (0.06) kcal mol −1 , Δ S = −5.3 (0.3) eu) and rate limiting with an isomerization time constant of 6.3 (1.6) ps. The trigonal bipyramidal complex was found to be an intermediate, with an activation barrier of 2.2 (0.2) kcal mol −1 and 2.4 (0.2) kcal mol −1 relative to the equatorial and apical square pyramidal isomers respectively. This study provides direct validation of the mechanism of Berry pseudorotation – the pairwise exchange of ligands in a five-coordinate complex – a process that was first described over fifty years ago. This study also clearly demonstrates that the rate of pseudorotation approaches the frequency of molecular vibrations. 
    more » « less